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Generalized Microstrip on a Dielectric Sheet

ALBERT L. HOLLOWAY

Abstract —This paper describes a procedure for arriving at a close
approximation to the capacitance between symmetrically placed conducting
strips, possibly of different widths, on opposite sides of a dielectric sheet.
The procedure is based on static methods, following Black and Higgins [3]
for total capacitance of the structure with vacuum dielectric everywhere,
and employing Wheeler’s [7] method for determining the series component
of dielectric capacitance.

Dielectric polarization is included. Refraction at the vacuum/dielectric
boundary is ignored in the derived method, but its effect is subsequently
shown to be small.

The derived equations are valid for all finite impedance, all values of
relative dielectric constant, and all conductor widths. The maximum ab-
solute error is estimated to be 0(0.001-Z ), where Z’ is the impedance of
generalized microstrip on a dielectric sheet.

The methods described have general application to open transmission
lines on a dielectric sheet, for which the appropriate conformal transforma-
tions can be found.

I. INTRODUCTION

HE PRIMARY application of generalized microstrip

is in the design of balun transformers using the tapered
microstrip configuration described by Rumsey [1]. Baluns
of this type can simultaneously provide both unbalanced
to balanced mode conversion and a suitable impedance
transformation between an unbalanced coaxial transmis-
sion line and the balanced terminals of an antenna or
other device. The Klopfenstein [2] impedance taper pro-
vides an optimum impedance transformation but requires
a detailed knowledge and control of phase velocity and
impedance at every point along the taper. The procedures
described in this paper are intended to accurately provide
those parameters.

The conformal analyses and formulas of this paper are
specific to generalized microstrip; however, the method
can be applied to a wide varitey of open strip configura-
tions on a dielectric sheet, provided the appropriate con-
formal transformations can be obtained.

Generalized microstrip in a homogeneous dielectric was
analyzed by Black and Higgins [3] using conformal map-
ping. A modification of their analysis is used in this paper
to determine the total capacitance of generalized micro-
strip in free space. The special case of a conducting strip
separated from an infinite conducting plane by a dielectric
sheet was analyzed by Dukes [4], {5] with the aid of an
electrolytic tank, and later by Wheeler [6]-{8] using ap-
proximate conformal mapping and an interpolation tech-
nique which produced a correction term to the result
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obtained by Dukes [4]. More recently Weiss ef al. [9], [10]
developed computer programs treating, as one option, the
case of unbalanced microstrip on a dielectric sheet using a
numerical method, the dielectric Green’s function, de-
scribed by Sylvester [11].

This paper is concerned with generalized microstrip of
the type analyzed by Black and Higgins [3] but on a
dielectric sheet as treated, for special cases, by Dukes,
Wheeler, and Wéiss et al. Exact conformal mapping is
used, as opposed to approximate conformal mapping em-
ployed by Wheeler. Exact methods result in solutions
containing special functions and integrals, which are easily
computed using standard computsr subroutines. A param-
eter R determines the conductor widths, a/h and b/h.
With R = 0.0, the conductors are of finite and equal width,
while R =1.0 gives a single, finite conducting strip over an
infinite ground plane. Values of R between these limits
result in two finite-width conducting strips of unequal
width.

In addition to providing design procedures for gener-
alized microstrip, a further objective is to provide results
as free from numerical and analytical approximation as
possible. The desired result is an accurate analytic solution
to fill the perceived need for a standard static solution
suitable for testing and calibrating numerical microstrip
solutions.

II. DESCRIPTION OF THE TRANSFORMATIONS

Conformal mapping, and in particular the Schwarz—
Christoffel transformation, provides a formalism for trans-
forming a relatively complex geometry, such as that of
generalized microstrip, into a simpler geometry where solu-
tions to the two-dimensional Laplace equation can be
more easily obtained, usually by inspection. The resulting
solutions apply to a transverse cross section of the struc-
ture, which is assumed to be constant in the axial direc-
tion. Direct application of conformal mapping is restricted
to cases with homogeneous dielectric. Two conformal
transformations are used in the analysis of generalized
microstrip. The first is used to obtain the total capacitance
of the conducting strips with vacuum everywhere, follow-
ing Black and Higgins [3]. The second finds the polariza-
tion capacitance of the dielectric due to electrification of
the inner faces of the conducting strips, the faces in direct
contact with the dielectric sheet. In this second case the
dielectric is of finite thickness and may also be of finite
width, but since the polarization field is entirely within the

- dielectric, it is still a homogeneous case. These conformal
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Fig. 1. Generalized microstrip for R =0.6 and free-space impedance

188.4 €. (a) Space coordinates. (b) Flux-potential coordinates.

transformations are derived in Appendixes I and II, re-
spectively.

A. Space and Flux-Potential Coordinates

While it is not necessary to fully understand the deriva-
tions of Appendix I to follow the development of the
capacitance and impedance equations, it is necessary to
understand the nature of the transformed (flux-potential)
parameters and their relationship to generalized microstrip
in space coordinates. Fig. 8 and Table III, in Appendix I,
show the relationships between points in space coordinates
and their images in flux-potential coordinates. These rela-
tionships are also shown in Figs. 1 and 2, which also show
the flux lines, equipotential lines, and dielectric boundaries.

Table I gives definitions of parameters for both the
space and flux-potential planes, and, where appropriate,
the equation for calculation of the parameter.

B. Space Coordinates

Fig. 1(a) shows the upper half-plane of generalized
microstrip with unequal width conductors. The space coor-
dinate plane is normalized by the half-separation of the
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Fig. 2. Generalized microstrip showing the flux, equipotential lines, and
dielectric boundaries for values of the parameter R from 0.0 to 1.0 and

free-space impedance 94.2 Q. (a) Space coordinates. (b) Flux-potential
coordinates.

TABLEI
DEFINITIONS AND EQUATIONS FOR SPACE AND FLUX-POTENTIAL
COORDINATE POINTS OF GENERALIZED MICROSTRIP

Space plane parameters

a The half-width of the narrow conductor in space coordinates.

b The half-width of the wide conductor in space coordinates

h The half-separation of the conductors in space coordinates

a/h The ratio of narrow conductor width to conductor separation, Eq (Al8)

b/h The ratio of wide conductor width to conductor separation, Eq (Al9)

Flux-potential plane parameters

a, The half-width of the inner face of the narrow conductor, Eq. (AlS)

ay The half width of the inner face of the wide conductor, Eq (Al6)

Up The flux-potential image of infinity in space coordinates, Eq (Al7)

Co The total capacitance of generalized microstrip with vacuum everywhere,
Eq (A8).

Gp The polarization capacitance of the dielectric, Eq (A34)

conductors, such that X =x/k and Y = y/h. The conduc-
tors are the bold vertical lines at X=—1.0 and X= +1.0.
They are assumed to be at potentials of —1 V and +1 V
respectively. The thin solid lines between the conductors
are the flux lines. The curved short-dashed line, terminat-
ing at the edge of the narrow conductor and on the inner
face of the wide strip, is the flux division line. All flux
below this line terminates on the inner face of the narrow
strip, and all flux above terminates on the outer face of the
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narrow strip. The alternate long-short dashed lines, or-
thogonal to the flux lines, are the lines of equal potential.
The shaded region between the conductors indicates the
area that will be occupied by dielectric. The vertical long-
double-short dashed lines, bounding the shaded area above
the conductors, are the nonmetallized surfaces of the in-
finitely wide dielectric sheet separating the conductors. In
the drawing the shaded area is filled, as indicated, by
vacuum and the flux lines shown are those appropriate to
vacuum.

C. Flux-Potential Coordinates

Fig. 1(b) is ‘the flux-potential image of the microstrip
structure in Fig. 1(a) resulting from the conformal trans-
formation derived in Appendix I. The line coding and
other conventions are the same as in space coordinates.

Three points in flux-potential coordinates are of special
significance. These are at (u=K, v=a,), (u=—K, v=
a,), and (u=u,, v=K"). The point (K, a;) is the flux-
potential imagg of the point (X = +1.0, Y=a/h) in space
coordinates. The conductor segment at u = + K, extending
from v=0.0 to v =ay, is the flux-potential image of the
inner face of the narrow conducting strip in space coordi-
nates. The conductor segment above the point (X, a,), and
extending to the point (K, K’), is the flux-potential image
of the outer face of the narrow conducting strip in space
coordinates. The point (— K, a,) has the same meaning
for the wide conducting strip. The point at (uy, K’) is the
flux-potential image of infinity in space coordinates.

The curved long-double-short dashed lines, labeled X =
+1.0 and X = —1.0, are the flux-potential images of the
nonmetallized surfaces of the infinite-width dielectric sheet
separating the conductors. The dielectric boundaries are
transformed between space and flux-potential coordinates
using egs. (A6) and (A7) for the general case. Equations
(A23) and (A24) can be used for the special case of
balanced microstrip. The shaded regions in both figures
are filled by vacuum, but represent the areas that will be
filled with dielectric. The flux and equipotential lines
shown are those appropriate to free space.

The solid horizontal lines in flux-potential coordinates
are flux lines, while the vertical alternate long—short dashed
lines are the lines of equal potential. The horizontal short-
dashed line at v = g, is the division line between flux from
the inner and outer faces. Flux below this line is from the
inner face, while that above is from the outer face. All flux
from the outer face is partially in the unshaded region and
partially in the shaded region whereas flux from the inner
face is entirely within the shaded region.

D. Generalized Microstrip

Fig. 2 shows generalized microstrip for six values of R
from 0.0 to 1.0 in space and flux-potential coordinates.
The flux and equipotential lines have been omitted in
flux-potential coordinates for clarity and readability of the
composite graph. All six illustrations are at the same
impedance, 94.2 Q. The dielectric boundaries in flux-
potential coordinates are labeled with the appropriate val-
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Fig. 3. The polarization field in dielectric for equal-width conducting
strips, R = 0.0, in space coordinates.

ues of R to allow correlation with their space coordinate
images. The lines and boundaries are coded as in Fig. 1.
Fig. 2 illustrates the changes in the field lines and dielec-
tric boundaries that take place as strip width is changed by
variation of R.

E. Effects of the Dielectric Sheet

The introduction of dielectric with permittivity greater
than one into the shaded regions has two effects. The more
important effect is that the dielectric is polarized by the
electric field, with the polarization capacitance rapidly
becoming the dominant capacitance as the relative dielec-
tric constant is increased. The second effect is refraction at
the vacuum /dielectric boundary. This effect, of necessity,
is not included in the calculations, but its effect is esti-
mated in Section VIIL.

All illustrations of fields in this paper are either with
vacuum everywhere or of the pclarization field within the
dielectric. Both of these are homogeneous cases. No illus-

trations are provided for the inhomogeneous case. This

omission is necessary because the fields cannot be ex-
plicitly calculated for the inhomogeneous case by the
methods of this paper.

F. The P Field in the Dielectric Sheet

Fig. 3 shows the polarization field within the dielectric
in the upper half-plane of space coordinates. Polarization
is only present for dielectrics with relative permittivity
greater than one.

III. OVERVIEW

The objective of the analysis, which follows, is to de-
termine the effective relative diclectric constant, e, of
generalized microstrip. Relative dielectric constant is de-
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fined as: €,=C/C,, where C, 1s the vacuum (or geomet-
ric) capacitance of the capacitor, and C is its capacitance
when filled with some dielectric substance.

If the capacitor is only partially filled with dielectric, the
definition can still be used if the capacitance ratio is
understood to represent effective dielectric constant.! Ef-
fective dielectric constant can be written

€t = Cy/Co (1)

with C, being the capacitance of the capacitor when par-
tially filled with dielectric.

A. Determination of C,/C,

The region above a,, see Fig. 1(b), is inhomogeneous,
since flux from the outer faces of the conducting strips is
partially in free space and partially in the dielectric region.
In this region a direct solution by conformal methods is
not possible. The restriction of conformal mapping solu-
tions to homogeneous dielectric is due to the lack of a
method for representing refraction of the flux lines at the
vacuum /dielectric boundary. In spite of this, it is possible,
using conformal mapping techniques, to obtain a very
close approximation to the static capacitance of micro-
strip. The method is to approximate the inhomogeneous
dielectric in the flux-potential plane by appropriate subre-
gions, or partial capacitances, connected in parallel or
series. Each subregion is filled with either vacuum or
homogeneous dielectric. The boundaries of parallel subre-
gions are on flux lines, while those in series have an
equipotential boundary. Selection of subregion boundaries
in this fashion removes the effect of refraction, which is
assumed to be small. The effective dielectric constant is
found by combining the capacitances of the vacuum and
dielectric subregions in series and parallel and dividing by
the total free-space capacitance, C,.

The derivation of C;/C, is simplified by the use of
fractional subregion capacitances of the form c,/C,, where
¢, is a subregion capacitance. These fractional subregion
capacitances can then be combined in series and parallel to
form e = C, /C,. This procedure is equivalent, but alge-
braically simpler, than directly combining the subregion
capacitances before dividing by C; to obtain € .

The necessary assumption for application of this method
are:

1) The effect of refraction angle at the vacuum /dielec-
tric boundary is negligible.

2) The conductors are of zero thickness.

3) The conductors are lossless.

4) The dielectric sheet is lossless.

5) The longitudinal electric field is negligible.

In addition to the five assumptions above, the design
restrictions that a <A, /2 and h << A, /2 at the highest
operating frequency are required to avoid higher modes in
nonstatic applications, where a is the width of the nar-

'Effective dielectric constant is the single relative dielectric constant in
all space that produces an equivalent capacitance.
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rower strip, % is the dielectric thickness, and A 5 18 the
wavelength in the dielectric.

IV. DERIVATION OF EFFECTIVE DIELECTRIC CONSTANT

It will be necessary, for consistency, to define fractional
parameters for conductor width as well as for subregion
capacitance. Fractional width parameters are expressed as
width over total width, just as fractional capacitance is
capacitance over total capacitance. In all cases the capaci-
tances will be “geometric” capacitances, i.e., derived as
conductor width over conductor separation, and assumed
to be in vacuum.

A. Fractional Parameters

Derivation of the fractional parameters will be made
with reference to Fig. 1(b).

1) Fractional Free-Space Width Parameters: The width
of the inner face of the narrow conductor, including both
half-planes, is 24, and the total conductor width is 2K".

The fractional width of the inner face is

‘Al=2a,/2K"=a,/K". (2)

Similarly the fractional width of the outer face can be
written

1- A1=2K’~a,)/2K'=1~a, /K. 3)

2) Fractional Free-Space Capacitance Parameters: The
capacitance of the inner conductor face is

€2a,/2K =¢€qa, /K.
The total capacitance is
Co=¢,2K’/2K =¢,K’/K.

The fractional capacitance of the inner face is
Al = (eoa,/K)/ (€, K'/K) =a /K.
The fractional capacitance of the outer face is

1—Al=(€q2(K’'—a;)/2K)/(e¢;,K'/K) =1—a,/K".
(5)

A consequence of normalization is that the fractional
widths, capacitances, and areas are algebraically equiv-
alent. They are not, however, physically equivalent. In the
derivation, which follows, the physical usage of these
parameters will be indicated at points where confusion
might result.

3) Fractional Dielectric Parameters: The two fractional
dielectric capacitances will be designated g’ and g”, after
Wheeler [7]. These two parameters are obtained from two
separate conformal transformations. Wheeler termed these
parameters filling fractions and defined them as fractional
areas. The disignation of ¢’ and ¢”, as capacitance, is
thought to be more physically relevant than area.

a) Derivation of q’: The parameter g’ is the fractional
capacitance of the total dielectric area, when assumed to
be purely in parallel.

Let A, be the area of the dielectric region in the upper
half-plane; then the total dielectric area is 24 ,. The effec-
tive width of the dielectric area is W=24,/S, where

(4)
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S = conductor separation = 2K, giving: W= A,/K. The
effective parallel capacitance is ¢ W/S = ¢, W/2K =
€,A,/2K?. The fractional capacitance of the total dielec-
tric region is

g’ =(eqd,/2K?) /(e,K'/K)=A,/2KK".

The area, A4,, is obtained by integrating the area under
the curved dielectric boundaries in Fig. 1(b). This gives

1 +K
= 2KK/,f_KU(u)du (6)
where v(u) is the function describing the dielectric
boundary. The argument, v(u), is given by eq. (A6) for the
general case and by (A24) for the case R = 0.0. Use of (A6)
requires an iterative procedure. An additional difficulty
with the area integration occurs when the dielectric
boundary becomes double valued with respect to u, as
shown in Fig. 2(b), for R = 0.8. When this occurs, special
handling is required.

b) Derivation of q”: The second dielectric parameter,
q”, is the ratio of the polarization capacitance, C,, to the
total capacitance C:

q/

q"=G,/C ™)

where C, is given by (A34), and C; = ¢(K'/K.

The capacitance ¢’, because of its curved dielectric
boundary, is actually neither a series nor a parallel capaci-
tance, but a combination of both. It is assumed to be
purely parallel for the purpose of comparison with the true
parallel capacitance g”.

Fig. 4(a)—(c) shows the behavior of the parallel frac-
tional capacitances, ¢/, ¢”/, and Al as functions of free-
space impedance and the parameter R. An important
feature is that the true parallel fractional capacitance, ¢/,
is always slightly less than the equivalent parallel frac-
tional capacitance of the total dielectric area, g’, for all
finite impedance and all R.

All width and capacitance parameters used in the re-
mainder of the main body of this paper are fractional
parameters. To avoid unnecessary repetition they will be
referred to simply as width, capacitance, or area.

B. Internal and External Capacitances

The total microstrip capacitance can be represented as
two capacitances in parallel, designated ¢, for the internal
capacitance and c, for the external capacitance. These
capacitances are defined as follows:

¢, = the capacitance resulting from flux terminating on
the inner face of the narrow conductor;

¢, =the capacitance resulting from flux terminating on
the outer face of the narrow conductor.

1) Internal Capacitance: The internal capacitance is
composed of two partial capacitances in parallel. These are
the electric component and the dielectric polarization com-
ponent. The nature of these capacitances is illustrated by
reference to Fig. 1(b). The internal free-space capacitance,
given by (4), is A1. If the strips are immersed in an infinite,
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Fig. 4. Values of the parallel capacitances (a) ¢’, (b) ¢”’, and (c) A1 for
generalized microstrip versus free-space impedance and the parameter R.

homogeneous dielectric with relative dielectric constant
€, > 1, the internal capacitance can be written

c,=Al(e, —1)+ Al. (8)

The first term on the right is the dielectric polarization
term and the second is the electric, or free-space, term. For
the homogeneous case the polarization and electric fields
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are coincident everywhere, so the internal capacitance can,
equivalently, be written as ¢, = ¢, A41.

The polarization field of interest in microstrip is that
shown in Fig. 3. For this case, the polarization field is
constrained by the finite dielectric boundaries. The electric
and polarization fields are no longer coincident, and the
internal capacitance must be expressed as the parallel
combination of the polarization and free-space capaci-
tances,

c,=q"(e,—1)+ Al 9)
where ¢” and Al are the internal polarization and free-
space capacitances, respectively. Equation (9) is valid for
all values of dielectric constant. For free space it reduces
to ¢, = Al, as it should.

2) External Capacitance: The external capacitance, c,,
is the capacitance resulting from the flux terminating on
the outer face of the narrow conductor. This flux fraction
is partially in dielectric and partially in air. The lumped
equivalent circuit consists of a free-space capacitor in
series with a dielectric capacitor. Wheeler [7] noted that
the difference ¢’— ¢” can be interpreted as the series
component of dielectric area. This small surplus area is the
series dielectric in the external capacitance.

Fig. 5 is a schematic representation of the internal and
external capacitances in parallel. The external capacitance
is the series combination of the vacuum and dielectric
components, of width 1— A1, at the top of the sketch. The
width is that given by (3). The shaded region on the upper
left, of separation § and width W=1— A1, represents the
series dielectric component of the external capacitance.
The unshaded region, with separation 1— S, is the series
free-space capacitance.

The width of the series dielectric component is 1 A1
and its area is ¢’ — g”’. The series separation S is obtained
from

WXS=q —q" (10)

and
S=(q’'—q")/W. (11)
The inverse of the external capacitance is
1/c,=1/(eW/S)+1/(W/(1-5))
giving the external capacitance as
W
SIS(-1/s (12)
Substitution of 1— A1 for W and the right-hand side of

(11) for S in (12) yields the expression for the external
capacitance:

4

1— 41

‘ q'-q"
1- (1 1/6)_—_/11_

(13)

In the limit ¢, — oo the external capacitance reaches a
finite limit. This is the maximum possible values of exter-
nal capacitance:

. 1- A1
limit ¢, = —— (14)
€ =0 1— q9 —q
1— 41

C. Effective Dielectric Constant

Finally, the effective dielectric constant is obtained by
combining the internal capacitance, (9), and external
capacitance, (13), in parallel:

1- 41
q9'—q”
1-41
For calculation, substitute a, /K’ for A1, with a, given
by (Al6) for the general case and (A26) for R=00.
Compute ¢’ using (6) and ¢ with (7).
In the limit e, —oc the ratio of effective dielectric
constant to relative dielectric constant is

6111'_1)1102 (Eeff/ir) = q/, = Cp/CO‘

=q”(e,—1)+ Al + (15)

1-(1-1/¢,)

(16)

It is noteworthy that the width of the wide strip, A2,
does not appear in the equation of e . This width, b/k in
space coordinates, enters the equations via the calculation
of g” and (. It also influences the value of ¢’ in the
calculation of dielectric area.

D. Approximation of €,

The most complex procedure in the use of (15) is the
computation of ¢’, by numerical integration. Wheeler [7]
obtained this integral by approximating the dielectric
boundary as an ellipse, which gives good accuracy in the
mid-range of impedance for R = 0.0 or R =1.0. Because of
the wide range of boundary shapes occurring in gener-
alized microstrip (see Fig. 2(b)) this procedure cannot be
used in general. The following empirical formula does not
require integration and gives Z° within better than +0.25
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percent of the result from (15):
1-— 41

eeffqul(er—1)+Al+ q//__Al
1-A41
(17)

Equation (17) is valid to the specified accuracy for
0<Z,<500 2, 0< R<1 and 1<c,. It is the empirically
adjusted average between the case with no dielectric above
Al, and that where all of the dielectric area g’ — A1 is in
series.

The impedance, Z’, in the presence of the dielectric

sheet is given by
Z'=Zy/\ew (18)

where Z, is the free-space impedance of the microstrip,
given by (A9).
The relative phase velocity, v,, is given by
0,=2Z"/Zy=1/ey - (19)
Two other important parameters, a /b and b/h, are
computed using (Al18) and (A19) in Appendix I. These
parameters will usually be computed at the same time as
the computationally related parameter a,. They must be

computed prior to calculation of polarization capacitance,
since a/h and b/h are arguments of C,.

1-0.536(1—1/¢,)

V. COMPARISON TO PREVIOUS ANALYSES

The analyses of Dukes [4] and Wheeler [7] are for the
special cases R =0.0 and R =1.0; however their formula-
tions of e, can be directly applied to the general case,
using the equations derived in the appendixes.

To compare the e equations derived by Dukes and
Wheeler, the external capacitance, (13), can be rewritten in
the form

1
=(1—A1)—— 20
c= (1= A= (20)
where
q/__q//
X=(1-1 _— 21
(1-1/e) T (1)

Since X is always less than 1, (20) can be expanded in a
binomial series, giving

,=(1-A)(1+X+ X2+ X3+ ---). (22)

The effective dielectric constant can be approximated by

using one or more terms of the series in (22) as the external
capacitance in parallel with the internal capacitance.

A. Comparison with Dukes [4]
Using only the first term of (22) gives
€ ~q7(e,— 1)+ Al+1—Al=q"(e,—1)+1. (23)
This is exactly the equation derived by Dukes [4]. Effec-
tively, (23) simply ignores the presence of dielectric in the

external capacitance. Z’ computed from (23), and using
the exact conformal equations from the appendixes, is
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Fig. 6. Microstrip impedance computed by the methods of Wheeler [8],
Weiss et al. [10], and the conformal methods of this paper versus
conductor width and dielectric constant, for a conducting strip on a
diclectric sheet over an infinite ground plane.

accurate to about 1 percent of Z’, computed using (15).
This shows that the effect of dielectric in the external
region is not very significant with respect to impedance.
B. Comparison with Wheeler [7]

Including the first two terms of (22) gives
et = ¢ (e, 1)+ AL+1-A1+(1-1/¢,)(q" —q")
=q"(e, ~1)+1+(1-1/¢.)(q¢" = q"). (24)

Wheeler’s [7] expression for €., consists of two equa-
tions. The first is an interpolation to obtain the effective
“filling fraction,” and the second to obtain the effective
dielectric constant. These equations are

g=9q"+ g__:rq (25)
and
e =q(e,—1)+1. (26)
Substitution of ¢ from (25) into (26) gives
e =q"(e,~1)+1+(1-1/¢,)(¢' = ¢"). (27)

Equation (27) is identical to (24), showing Wheeler’s
solution to be the first two terms of the binomial expan-
sion of the solution derived in this paper.
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C. Comparison with Previous Numerical Results

In addition to the analytical comparison with previous
static solutions, it is instructive to compare the numerical
results to the quasi-static, dielectric Green’s function
analyses of Sylvester and Weiss et al. and to Wheeler’s
approximate conformal equation. In the conformal analyses
the differences result from approximations made by the
analyst, while differences between the conformal solution
of this paper and the dielectric Green’s function result
from numerical and discretization errors in computation of
the dielectric Green’s function and, to a lesser extent, from
the omission of refraction in (15).

Fig. 6 is a direct comparison of Z’ computed using (15)
of this paper, eq. (9) of Wheeler [8], and the MSTRIP2
program of Weiss et al. [10]. Both MSTRIP2 and Wheeler
[8] differ, at most, from the results of this paper by slightly
more than 1 percent, primarily due to approximation,
numerical, and discretization errors. Identification of the
differences as approximation and numerical errors in
Wheeler {8] and Weiss et al. [10] rather than as the
omission of refraction is made from comparison at €, =1.0,
where the conformal solution of this paper is exact.

Two more recent papers, on the calculation of micro-
strip parameters in the presence of a dielectric sheet with
R =1.0, were brought to the attention of the author by one
of the reviewers. These are Poh et al. {12] and Callarotti
et al. [13]. Both of these papers employ numerical methods
for calculation of capacitance. Neither has been compared
to the results of this paper.

VI. COMPUTATION

For computation of conventional microstrip, eq. (9) of
Wheeler [8] is the fastest and simplest method. The 1
percent accuracy provided by this equation is adequate for
most practical purposes. For generalized microstrip equa-
tion of this paper, (17), provides an accuracy of 0.25
percent. This approximate form is recommended for all
but theoretical purposes.

Computation of generalized microsirip begins with
selection of values for free-space impedance, Z,, and the
parameter R. A troublesome feature of the parameter R is
that its value cannot be selected in advance to provide a
particular ratio of strip widths, except for R=0.0 and
R =1.0. Another problem is that the impedance in the
presence of the dielectric sheet, Z’, is not known until the
last step, when (18) is evaluated.

Efficient, compact, and accurate computer programs
can, nonetheless, be written to provide generalized micro-
strip design parameters. A simple approach is to construct
* interpolation tables, such as that plotted in Fig. 7, for
alumina.

Table II is a basic calculation schedule for producing
such interpolation tables. Separate tables are required for
each substrate material. The tables can be stored on disk
files and referenced directly by the design program for
interpolation. More general programs can be written using
iteration. If high accuracy is required, (17) can be used to
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Fig. 7. Conductor widths versus impedance and R for generalized
microstrip on alumina.

TABLE II
A Basic CALCULATION SCHEDULE FOR PRODUCING
INTERPOLATION TABLES, WITH SUBROUTINES FROM
THE IBM 360 SCIENTIFIC SUBROUTINE PACKAGE

CALCULATION EQUATION/S SUB-PROGRAM/S

1 Input Z  eeeeeeeee

2 Compute moduli, k' and k (A9),(A10), (All), (A12) User written
3 Compute elliptic integrals = --------- DCEL1, DCEL2
4 Imput R e

s Compute CL and C2 (A13), (Al4) User written
6 Compute T, and T, (A15), (A16) User written
7 Compute &, and a, (Al5), (A16) DELI1

8 Compute E(T,.k') and E(T, k')  --ccecnn- DELI2

9 Compute a/h and b/h (A18),(AL9) User written
10 Compute GP (A33),(A34) User written, DCEL1
11 Compute q'* = € /C, C, from above and (A8) User written
12 Input L S nna

13 Compute ¢ ¢ (17) User written
14 Compute Z* (18) User written

15 Compute vp (19} User written
Integration of area and mapping fields between flux-potential and space planes,
requires the Jacobian elliptic functions, sn, cn and These can be computed using

the sub-program DJELF

get within 0.25 percent; (15) can then be used to improve
accuracy. Because of the required integration of area, (15)
is generally unsuitable for direct use in iterative programs.

VIL

The total difference between the presence or absence of
dielectric in the external region is only about 1 percent of
Z’' (see Section V-A) and the effect on impedance of

ESTIMATE OF REFRACTION ERROR
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refraction at the dielectric boundaries must be much smaller
yet. To quantify the error introduced by omission of
refraction, a second solution, of equivalent precision to the
conformal solution but including refraction, is needed. The
difference between these solutions would then approxi-
mate the refraction error in the conformal solution.

A. Basis for Refraction Error Estimate

The dielectric Green’s function includes refraction, but
numerical and discretization errors are so large as to
obscure its effect. To obtain a result of sufficient accuracy
to permit comparison with the conformal solution of this
paper in the range between ¢, =1 and ¢, — o0, the dielec-
tric Green’s function can be asymptotically corrected.
Neither the conformal procedures of this paper, nor
MSTRIP2, impose a limitation on the upper value of
dielectric constant, so any very large value of e,, within
floating point range of the computer, can be used.

The solution of this paper provides the exact values of
Z, and a/h at ¢, =1. Equation (14) is the maximum value
of external capacitance, ¢, max. It reaches this value at
very large dielectric constant. Equation (16) is the value of
internal capacitance at very large dielectric constant, Only
a fraction of the total external capacitance, ¢, max, is due
to refraction, so the refraction error at large e, must be
very much less than ¢, max /(¢,C, /C;). For €, =10 this
ratio is O(1071%), From this it is seen that refraction error
is negligible at this dielectric constant.

B. Procedure for Calibrating MSTRIP2

The following exact parameters from the conformal
solution will be used: I. @e¢, =1, Z, (exact), a/h (exact).
II. @e, =10'°, Z’ (=exact), a/h (exact).

1) With inputs of Z, and ¢,=1 find a/h, with the
conformal procedure.

NOTE: To obtain values of a /4 suitable for precise
comparison with MSTRIP2, the value of free-space imped-
ance used in the conformal computation, nominally 376.7
{2, was set to correspond to the velocity of light used in
MSTRIP2, 2.99792458 X 10% m/s.

2) With inputs of ¢,=1 and w/h=a/h, find Z with
MSTRIP2. Let this be Z; .

3) With inputs of Z, and ¢,=10", find Z’ with the
conformal procedure.

4) With inputs of a/h and ¢, =10, find Z with
MSTRIP2. Let this be Z/.

5) Form the ratios r’=Z,/Z, and r”"=2Z'/Z,. (28)

6) Find the values of r for intermediate values of €, by
interpolation in 1/¢, using

r=r"+ (29)

7) With input of the value of a / h used above, and any
1<e¢, <10 to MSTRIP2, compute a value of Z,.
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Adjust the value of Z, using
Z,(adj.) =rZ,. (30)

8) With the value of Z; used above, and the value of
1<e, <10 used in the preceding step as input to
the conformal procedure, compute the value of
Z'(e,).

9) Compute the percent difference as

percent difference = [ Z’(¢,)/Z, (adj.) — 1] X 100.

The same procedure can be used to calibrate the capaci-
tances CAPIE and CAPKE in MSTRIP2, with identical
results for the difference in Z’.

C. Refraction Error Results

The value of Z (adj.) from MSTRIP2 is always slightly
lower than the value of Z’ computed by the conformal
equations. The maximum difference, of 0.0874 percent,
occurs at or near Z;=111.0 € (a/h=1.3183874) and
€,=3.6. This difference is tentatively attributed to the
omission of refraction effects in the conformal computa-
tion of Z’.

The correction technique gives consistent results over
the range of Z, from 10.0 to 500.0 @ using MSTRIP2 with
m = 20. MSTRIP2 does not support computation of gener-
alized microstrip, but the results obtained for a single
conducting strip over an infinite ground plane, R =1.0, are
thought to be reasonably typical.

VIIL

The computational methods used in preparation of this
paper have been carefully checked and tested at every
stage, and are thought to provide a level of accuracy more
than sufficient to support these conclusions.

The exact conformal methods described herein yield
static approximations at, or near, the accuracy limit for
static techniques. The absolute impedance error is esti-
mated to be 0(0.001-Z"), almost entirely attributable to
omission of refraction.

The solution has a large parametric range, being valid
for all finite impedance, all values of dielectric constant,
and all conductor widths. The high accuracy together with
the large parametric range makes the solution suitable as a
primary static microstrip standard.

Of the five assumptions required, one, that of negligible
refraction error, has been shown to be valid. The remain-
ing assumptions, with the possible exception of finite
conductor thickness, cannot be removed, or their effect
estimated, by conformal techniques.

With reasonable design rules, consistent with the given
assumptions and design restrictions, the methods described
are capable of producing generalized microstrip designs
with an accuracy significantly better than the practical
limitations of fabrication and materials. If required, finite
conductor thickness and frequency-dependent parameters
can be computed by applicable techniques and included as
perturbations.

CONCLUSIONS
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Fig. 8 Schwarz—Christoffel transformation diagram of the z, 7, and w
planes.
TABLE I1I
TABULATION OF TRANSFORM POINTS
Point @ ® ® @ ® @
2—plane Int. ~h -h+ib ~h +h +h+ia +h
t—plane -1/Rk -1/k c2/k -1 +1 C1/k +1/k
Exponent -2 -1/2 +1 -1/2 ~-1/2 +1 -1/2
w~plane ugHikK' —K+iK' -K+iag -K +K +K+iay +K+iK'
t~plane -1/Rk  -1/k c2/x -1 +1 c1/x +1/k
Exponent 0 -1/2 0 -1/2 -1/2 0 -1/2
APPENDIX I

The following is a summary analysis of the Schwarz—
Christoffel transformation diagrammed and tabulated in
Fig. 8 and Table 111, which applies in the limit €, —>1. The
solution involves elliptic integrals and functions, with which
the reader is assumed to be familiar.

The solution 1s obtained with respect to a parameter R
whose value from 0.0 to 1.0 determines the conductor
widths, a/h and b/h.

The notation of elliptic integrals and functions is rather
chaotic and nonstandardized, so it was felt desirable to
select a single reference and to follow the notation of that
reference where possible. The reference selected is the
Handbook of Elliptic Integrals for Engineers and Scientists
by P. F. Byrd and M. D. Friedman [13]. At appropriate
points in the following text the notation “B. F. nnn.nn”
appears following an equation, meaning that the source of
the equation or identity is Byrd and Friedman’s equation
nnn.nn.

From Table III the Schwarz-Christoffel equations for
the transformations are seen to be

dz/dt =D'(t—Cl/k)(t—C2/k)(t—1/Rk) "
(e +1/k) (e =1/K) (1 +1) (1 =1)) 7 (A1)
and

dwydt=D"((t +1/k)(t=1/k)(t +1) (1 -1)) /.
(A2)
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Dividing (A2) by (A1) yields
dz/dw = (dz/dt)/(dw/dt)
=D(t—Cl/k)(t—=C2/k)(t +1/Rk) . (A3)
Equation (A2) is the well-known transformation 7=
sn(w), (B.F. 119.01, 129.50), which transforms the interior
of a rectangle into a half-plane. Substitution of sn(w) for ¢

in (A3) gives the form which must be integrated to find
z(w):

z(w)=D/

where D= D"/D’.

This map differs from the map of Black and Higgins [3]
in the selection of the tr-plane mapping points and in the
definition of the parameter. The integration is accom-
plished by the method of undetermined coefficients as
outlined in [3]. It results in the general transformation
equation:

w(sn(§)—Cl/k)(sn(§)~C2/k)
(sn(£)+1/Rk)’

d¢ (A4)

2hk’ E'—K’  Rken(w)dn(w)
2(w) = 7 E(w)+ k- " Rken(w)+1
(AS)

X=x/h and Y= y/h are obtained in real form by
substitution of z=x + iy and w = u + iv in (A5). Equating
the real and imaginary parts and after some manipulation,
the equations X=x/h(u,v,k) and Y= y/h(u,v, k) are
found.

For brevity the following notation will be used:

s=sn(u,k) c=cn(u,k) d=dn(u,k)
s;=sn(v, k') c;=cn(v, k') d,=dn(v,k’)
A=cdd,(c?—k3%2)  B=ss;c,(k%?+d%d?)
C=sd, D=cdsc, G=k>cds?
H=1-k%d*}l P=d%d,
u 2K’ E
X=x/h=E+ . E(u,k)—-l_gu
R**[RkA+(AC— BD)/H] P]
+ 5 — +— (A6)
(RKC+ H) +(RkD) G

’

Y=y/h=

T

I:(U—I)E'

R*?[RkB+(AD—-BC)/H] P

(RKC + H)*+ (RkD)’ H|

(A7)

Equations (A6) and (A7) are required for mapping the
flux and equipotential lines. Equation (A6), with X set to
+1.0 and ~ 1.0, together with an integration subroutine, is
required for finding the dielectric area in the flux-potential
plane. Neither equation is required for the approximate
solution, which does not involve calculation of area.

The free-space microstrip capacitance is determined in
the flux-potential plane as conductor width divided by
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conductor separation times the permittivity:

K/
Co=¢€o— F/m. A
0= €0 /m (A8)
The free-space impedance, Z,, is then
Q. (A9)

Given Z,, the elliptic moduli, &’ and k, are easily
determined, with a user-written program, by series expan-
sion of the “nome”, g = e~ ("K'/X) which can be expressed
in terms of Z, as

g = e G7677Z0), (A10)
The complementary modulus is then found as
= [©(0)/6,(0)]>, B.F.1052.01 (All)
where
0(0)=1+2)(-1)"g™ and ©,(0)=1+2Y 4",
1 1
B.F. 1050.01.
The modulus k is then found as
k=yV1-k"2. (A12)

Once the moduli are calculated, the complete elliptic
integrals, K, K’, E and E’, can be calculated using
appropriate scientific subroutines. These are functions of
impedance only, so they will not need to be recomputed
for a given free-space impedance.

In the process of integrating (A4), expressions for C1-C2
and C1+ C2 arise. These constants, connecting the w to ¢
and z to r transformations, are

c1.c2 = B RKEK (A13)
) - RZE/_K/
and
R(k*K’+ K’ ~2E")
Cl+C2= (A14)

k2 ( R2 E'— K /)
Equations (Al13) and (A14) are solved for C1 and C2
using the quadratic equation.

A. Evaluation at Points in the w Plane

The points a,, a,, and u, in the w plane are of special
significance. They represent, respectively, the half-width of
the narrow conductor, the haif-width of the wide conduc-
tor, and the u coordinate of the flux-potential image of
infinity.

The Jacobian form of the incomplete elliptic integrals,
with argument 7 = tan¢ = (sin¢)/(cos ¢) = sn/cn, will be
used in the derivations that follow. This is the form for the
Bulirsch algorithms {14], used in the IBM-360 Scientific
Subroutine Package (SSP), which is recommended for these
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calculations:
, -2
a1=F(Tl,k’), with T1=tanq51= m‘i
(A15)
C2%—k?
a2=F(T2,k’), with 7, = tan¢, = m
(A16)
R2
u0=F(T3,k’), withT3=tan¢3=— m .
(A17)

B. Evaluation at Points in the z Plane

The general solution is obtained by evaluating (A5) at
point (6), where z=h+ia and w=K +ia,. Similarly,
b/h is evaluated at pomt (3), with z=—h+ib and w =
- K+ 1a2

1
= [le(l c12) E_

R
RC1+1

—E(Tl,k’)-f-EF(Tl,k’)] (A18)
2 2 k- o) R

ICZ|~ RC2+1
—E(Tz,k’)+—11§F(T2,k’)]. (A19)

C. The Special Case R=0.0

The general equations simplify significantly when R is
taken as zero:

u ! kscds?
sz/h=E+ E(Tu,k)——Etri-Tzdzs12
(A20)
where T, =sn(u, k)/cn(u, k).
Y=y/h= 2K [(v—l)E’ + ————zﬂiﬁ—l— . (A21)
1—- k%%t

In the general case it is not possible to obtain an explicit
form v=v(u, X, R, k), but in this case such an expression
can be obtained. This expression is very convenient for
integrating the dielectric boundary to find the dielectric
area in the flux-potential plane.

The expression is obtained by solving (A20) for s; = sin¢
and forming tan¢. Let

u E
S=5 [X+ E] tur—E(T, k) (A22)
where T, = sn(u, k)/cn(u, k); then
1 S
T,=tan¢ = Z &m (A23)
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giving
v(u, X,k)=F(T,,k) and V=uv/K’. (A24)

The two dielectric boundaries are defined by X=+1.0
and —1.0 in (A20), but because of symmetry, only one
quadrant need be used. Use of (24) allows rapid computa-
tion of the area under the curved dielectric boundary in
the flux-potential plane.

Substitution of R =0.0 in (A13) and (Al4) defines a
simpler constant CO:

El
o
The conductor widths corresponding to a given imped-

ance are obtained by substitution of C0 for C1 in (A15).
The appropriate argument is

, . CO0— k?
a;=F(Ty, k ), with T, = tan¢, = m )

(A26)

For this case, R=00, a,=ay, u,=00, and b/h=a/h.
The corresponding conductor widths are
a b 2K'[T,k(1-C0)

E
— == — E(Ty, k) + —F(T,. k).

Co (A25)

(A27)

The equations of this section can also be applied to the
case R =1.0 by the method of images.

ApPENDIX |1
ANALYSIS OF THE DIELECTRIC
POLARIZATION CAPACITANCE

The analysis of this section is exact for the dielectric
polarization due to electrification of the inner faces of the
conductors. The result is valid for €, greater than 1.

Fig. 9 is a diagram of the transformations. The rectan-
gles representing space coordinates (z plane) and flux-
potential coordinates (w plane) are mapped to two half-
planes using the well-known transformation ¢ =sn(z’, k)
and ¢’ =sn(w, /). These rectangles are of dimensions N
by N"and L by L', where N, N’, L, and L’ are complete
elliptic integrals of the first kind with moduli & and /,
respectively. The z and z’ planes are connected by the
scale factor m = N/n=N'/n’.

The intermediate half-planes are connected by the bilin-
ear transformation:

-0
(d=c)(f=1)’

At point (5), t'=1/1, t=e, ¢=0, and d = . Substitu-
tion of these values in (A28) gives

[=d/e. (A29)
At point (2), d =sn(ma). At point (5), e=sn(mb+iN’)

=1/[ksn(mb)], by B.F. 125.01. Substitution for 4 and e
in (A29) gives

l=d/e=ksn(ma,k)sn(mb, k).

!

(A28)

(A30)
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b
n'=2h|Dielectric z—plane, (Microstrip coordinates)
-
n=w
) mb+iN'
iN'(k)
® @
E}
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Fig. 9. Transformation diagram for z, ¢, ¢’, and w planes for de-
termination of the dielectric polarization capacitance of generalized
microstrip.

The complete elliptic integral, N, is the width of the
dielectric sheet and N’ is its thickness, with ma the width
of the narrow conductor and mb the width of the wide
conductor, and m=N'/n’= N’/2h. Then

N'a 4 mb N’b
5, and mb= T

At this point, it is convenient to introduce the assump-
tion that the width of the dielectric sheet is very much
greater than its thickness, 24, and the width of the narrow
conductor, a. This assumption gives results that are inde-
pendent of dielectric width. If the dielectric is narrow, the
exact formulation may be used.

In the limit as N—>o0, N'=7/2 and k=1. With
substitutions for ma and mb, (A30) becomes

ma =

7a 7b
l=sn(zg,l)sn(zg,l). (A31)
By B.F. 122.09, sn(u,1) = tanh(u), yielding
7a b
l=tanh(ﬂ)tanh(ﬂ). {A32)

Equation (A33) is the simplest formulation for finding
the elliptic modulus, /, but it may fail numerically for
computation at low impedance where / approaches 1. This
can be overcome by using the expression for I’, which is
obtained by substitution of tanh? u=1-sech’?u and /> =
1—1'% in (A32), giving

I’ =\/sech® 4 + sech® B — sech? A sech’ B
where A = wa /4h and B = ab/4h.

(A33)
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~ The geometric polarization capacitance, computed by
conductor width divided by separation in Fig.9, is

(1]
[2]
- 31

4]
' tS]
l61
(71
(8l
je

[10]

C,=e¢ L) (A34)
N IOR
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