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Generalized Microstrip on a Dielectric Sheet

ALBERT L. HOLLOWAY

Abstract —This paper deseribes a procedure for arriving at a close

approximation to the capacitance between symmetrically placed conrltrdng
strips, possibly of different widths, on opposite sides of a dielectric sheet.
The procedure is based on static methods, following Black and Higgins [3]

for totaf capacitance of the structure with vacuum dielectric everywhere,

and employing Wheeler’s [7j method for determining the series component

of dielectric capacitance.

Dielectric polarization is included. Refraction at the vacuum/dielectric

boundary is ignored in the derived method, but its effect is subsequently

shown to be smafl.

The derived equations are valid for all finite impedance, afl values of

relative dielectric constant, and afl conductor widths. The maximum ab-

solute error is estimated to be 0(0.001. Z‘ ), where Z’ is the impedance of

generalized microstrip on a dielectric sheet.

The methods described have generaf application to open transmission

lines on a dielectric sheet, for which the appropriate conforrmd transforma-

tions can be found.

I. INTRODUCTION

T HE PRIMARY application of generalized microstrip

is in the design of balun transformers using the tapered

microstrip configuration described by Rumsey [1]. Baluns

of this type can simultaneously provide both unbalanced

to balanced mode conversion and a suitable impedance

transformation between an unbalanced coaxial transmis-

sion line and the balanced terminals of an antenna or

other device. The Klopfenstein [2] impedance taper pro-

vides an optimum impedance transformation but requires

a detailed knowledge and control of phase velocity and

impedance at every point along the taper. The procedures

described in this paper are intended to accurately provide

those parameters.

The conformal analyses and formulas of this paper are

specific to generalized rnicrostrip; however, the method

can be applied to a wide varitey of open strip configura-
tions on a dielectric sheet, provided the appropriate con-

formal transformations can be obtained.

Generalized microstrip in a homogeneous dielectric was

analyzed by Black and Higgins [3] using conformal map-

ping. A modification of their analysis is used in this paper

to determine the total capacitance of generalized micro-

strip in free space. The special case of a conducting strip

separated from an infinite conducting plane by a dielectric

sheet was analyzed by Dukes [4], [5] with the aid of an

electrolytic tank, and later by Wheeler [6]–[8] using ap-

proximate conform+ mapping and an interpolation tech-

nique which produced a correction term to the result
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obtained by Dukes [4]. More recently Weiss et al. [9], [10]

developed computer programs treating, as one option, the

case of unbalanced microstrip on a dielectric sheet using a

numerical method, the dielectric Green’s function, de-

scribed by Sylvester [11].

This paper is concerned with generalized microstrip of

the type analyzed by Black and Higgins [3] but on a

dielectric sheet as treated, for special cases, by Dukes,

Wheeler, and Weiss et al. Exact conformal mapping is

used, as opposed to approximate conformal mapping em-

ployed by Wheeler. Exact methods result in solutions

containing special functions and integrals, which are easily

computed using standard computer subroutines. A param-

eter R determines the conductor widths, a/h and b/h.
With R = 0.0, the conductors are of finite and equal width,

while R =1.0 gives a single, finite conducting strip over an

infinite ground plane. Values of R between these limits

result in two finite-width conducting strips of unequal

width.

In addition to providing design procedures for gener-

alized microstrip, a further objective is to provide results

as free from numerical and analytical approximation as

possible. The desired result is an accurate analytic solution

to fill the perceived need for a standard static solution

suitable for testing and calibrating numerical microstrip

solutions.

II. DESCRIPTION OF THE TRANSFORMATIONS

Conformal mapping, and in particular the Schw=z-

Christoffel transformation, provides a formalism for trans-

forming a relatively complex geometry, such as that of

generalized microstrip, into a simpler geometry where solu-

tions to the two-dimensional Laplace equation can be

more easily obtained, usually by inspection. The resulting

solutions apply to a transverse cross section of the struc-

ture, which is assumed to be com.tant in the axial direc-

tion. Direct application of conformal mapping is restricted

to cases with homogeneous dielectric. Two conformal

transformations are used in the analysis of generalized

microstrip. The first is used to obtain the total capacitance

of the conductitig strips with vatuum everywhere, follow-

ing Black and Higgins [3]. The second finds the polariza-

tion capacitance of the dielectric due to electrification of

the inner faces of the conducting strips, the faces in direct

contact with the dielectric sheet. In this second case the

dielectric is of finite thickness and may also be of finite

width, but since the polarization field is entirely within the

dielectric, h is still a homogeneous case. These conformal
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Fig. 1. Generalized microstrip for 1? = 0.6 and free-space impedance
188.4 Q. (a) Space coordinates. (b) Flux-potential coordinates.

transformations are derived in Appendixes I and II, re-

spectively.

A. Space and Flux -Potential Coordinates

While it is not necessary to fully understand the deriva-

tions of Appendix I to follow the development of the

capacitance and impedance equations, it is necessary to

understand the nature of the transformed (flux-potential)

parameters and their relationship to generalized microstrip

in space coordinates. Fig. 8 and Table III, in Appendix I,

show the relationships between points in space coordinates
and their images in flux-potential coordinates. These rela-

tionships are also shown in Figs. 1 and 2, which also show

the flux lines, equipotential lines, and dielectric boundaries.

Table I gives definitions of parameters for both the

space and flux-potential planes, and, where appropriate,

the equation for calculation of the parameter.

B. Space Coordinates

Fig. l(a) shows the upper half-plane of generalized

microstrip with unequal width conductors. The space coor-

dinate plane is normalized by the half-separation of the

R=o.o

R=O.6

R=O.2 R=O.4

R=O.8 R=l.O

(a)

I Vacuum I
0.01 I I

-K 0.0 +K
u-Axis

(b)

Fig. 2. Generalized microstrip showing the flux, equipotential lines, and

dielectric boundaries for values of the parameter R from 0.0 to 1.0 and

free-space impedance 94.2 Ct. (a) Space coordinates. (b) Flux-potential
coordinates.

TABLE I
DEFINITIONS AND EQUATIONS FOR SPACE AND FLUX-POTENTIAL

COORDINATE POINTS OF GENERALIZED MICROSTRIP

‘P

spa., PI... w~amet=,

The half -wldch of the narrow conductor in space coordinates,

The half -wdch of chc wde conductor in SP.c. coordinates

The half -separatmn of the conductors L. space coordinac?s

The rat,. of narrow conductor width to conductor separation, Eq (A18)

The ratio of wde conductor width to conductor separation, Eq (A19)

Fllc-potential plane paralecer,

The half -w, dch of the I“”,. face of che narrow conductor, Eq (A15)

The half width of the inner face of che wide conductor, Eq cA16)

The flux-potential lrn.ge of ~nfln~ty in space coordlnaks Eq (A17)

The total capacitance of generalized .Ccros trip with vacuum everywhere,
Eq (A8)

conductors, such that X = x/h and Y = y/h. The conduc-

tors are the bold vertical lines at X= – 1.0 and X= + 1.0.

They are assumed to be at potentials of – 1 V and + 1 V

respectively. The thin solid lines between the conductors

are the flux lines. The curved short-dashed line, terminat-

ing at the edge of the narrow conductor and on the inner

face of the wide strip, is the flux division line. All flux

below this line terminates on the inner face of the narrow

strip, and all flux above terminates on the outer face of the
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narrow strip. The alternate long–short dashed lines, or-

thogonal to the flux lines, are the lines of equal potential.

The shaded region between the conductors indicates the

area that will be occupied by dielectric. The vertical long-

double-short dashed lines, bounding the shaded area above

the conductors, are the nonmetallized surfaces of the in-

finitely wide dielectric sheet separating the conductors. In

the drawing the shaded area is filled, as indicated, by

vacuum and the flux lines shown are those appropriate to

vacuum.

C. Flux-Potential Coordinates

Fig. l(b) is -the flux-potential image of the microstrip

structure in Fig. l(a) resulting from the conformal trans-

formation derived in Appendix I. The line coding and

other conventions are the same as in space coordinates.

Three points in flux-potential coordinates are of special

significance. These are at (u = K, u = al), (u = – K, o =

az), and (u = UO, u = K’). The point (K, al) is the flux-

potential image of the point ( X = +1.0, Y= a/h) in space
coordinates. The conductor segment at u = + K, extending

from u = 0.0 to u = al, is the flux-potential image of the

inner face of the narrow conducting strip in space coordi-

nates. The conductor segment above the point (K, al), and

extending to the point (K, K‘ ), is the flux-potential image

of the outer face of the narrow conducting strip in space

coordinates. The point ( – K, a ~) has the same meaning

for the wide conducting strip. The point at (uO, K‘) is the

flux-potential image of infinity in space coordinates.

The curved long-double-short dashed lines, labeled X=

+1.0 and X= – 1.0, are the flux-potential images of the

nonmetallized surfaces of the infinite-width dielectric sheet

separating the conductors. The dielectric boundaries are

transformed between space and flux-potential coordinates

using eqs. (A6) and (A7) for the general case. Equations

(A23) and (A24) can be used for the special case of

balanced rnicrostrip. The shaded regions in both figures

are filled by vacuum, but represent the areas that will be

filled with dielectric. The flux and equipotential lines

shown are those appropriate to free space.

The solid horizontal lines in flux-potential coordinates

are flux lines, while the vertical alternate long–short dashed

lines are the lines of equal potential. The horizontal short-

dashed line at u = al is the division line between flux from

the inner and outer faces. Flux below this line is from the

inner face, while that above is from the outer face. All flux

from the outer face is partially in the unshaded region and

partially in the shaded region whereas flux from the inner
face is entirely within the shaded region.

D. Generalized Microstrip

Fig. 2 shows generalized rnicrostrip for six values of R

from 0.0 to 1.0 in space and flux-potential coordinates.

The flux and equipotential lines have been omitted in

flux-potential coordinates for clarity and readability of the

composite graph. All six illustrations are at the same

impedance, 94.2 fl. The dielectric boundaries in flux-

potential coordinates are labeled with the appropriate val-

b/h- —

1.0 +1.0
X-Axi~~OX:=x/h

Fig. 3. The polarization field in dielectric for equaf-width conducting
strips, R = 0.0, in space coordinates.

ues of R to allow correlation with their space coordinate

images. The lines and boundaries are coded as in Fig. 1.

Fig. 2 illustrates the changes in the field lines and dielec-

tric boundaries that take place as strip width is changed by

variation of R.

E. Effects of the Dielectric Sheet

The introduction of dielectric with perrnittivity greater

than one into the shaded regions has two effects. The more

important effect is that the dielectric is polarized by the

electric field, with the polariz~kion capacitance rapidly

becoming the dominant capacitance as the relative dielec-

tric constant is increased. The second effect is refraction at

the vacuum/dielectric boundary. This effect, of necessity,

is not included in the calculations, but its effect is esti-

mated in Section VII.

All illustrations of fields in this paper are either with

vacuum everywhere or of the polarization field within the

dielectric. Both of these are homogeneous cases. No illus-

trations are provided for the inhornogeneous case. This

omission is necessary because the fields cannot be ex-

plicitly calculated for the inhomogeneous case by the

methods of this paper.

F. The $ Field in the Dielectric Sheet

Fig. 3 shows the polarization field within the dielectric

in the upper half-plane of space coordinates. Polarization

is only present for dielectrics with relative permittivit y

greater than one.

HI. OVERVIEW

The objective of the analysis, which follows, is to de-

termine the effective relative dielectric constant, ~.ff, of

generalized rnicrostrip. Relative dielectric constant is de-
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fined as: c,= C/CO, where CO is the vacuum (or geomet-

ric) capacitance of the capacitor, and C is its capacitance

when filled with some dielectric substance.

If the capacitor is only partially filled with dielectric, the

definition can still be used if the capacitance ratio is

understood to represent effective dielectric constant.1 Ef-

fective dielectric constant can be written

Ceff= cd/c~ (1)

with Cd being the capacitance of the capacitor when par-

tially filled with dielectric.

A. Determination of C~/Co

The region above al, see Fig. l(b), is inhomogeneous,

since flux from the outer faces of the conducting strips is

partially in free space and partially in the dielectric region.

In this region a direct solution by conformal methods is

not possible. The restriction of conformal mapping solu-

tions to homogeneous dielectric is due to the lack of a

method for representing refraction of the flux lines at the

vacuum/dielectric boundary. In spite of this, it is possible,

using conformal mapping techniques, to obtain a very

close approximation to the static capacitance of @cro-

strip. The method is to approximate the inhomogeneous

dielectric in the flux-potential plane by appropriate subre-

gions, or partial capacitances, connected in parallel or

series. Each subregion is filled with either vacuum or

homogeneous dielectric. The boundaries of parallel subre-

gions are on flux lines, while those in series have an

equipotential boundary. Selection of subregion boundaries

in this fashion removes the effect of refraction, which is

assumed to be small. The effective dielectric constant is

found by combining the capacitances of the vacuum and

dielectric subregions in series and parallel and dividing by

the total free-space capacitance, CO.

The derivation of Cd/CO is simplified by the use of

fractional subregion capacitances of the form cd/CO, where

cd is a subregion capacitance. These fractional subregion

capacitances can then be combined in series and parallel to

form ~eff = Cd/CO. This procedure is equivalent, but alge-

braically simpler, than directly combining the subregion

capacitances before dividing by CO to obtain ~eff.

The necessmy assumption for application of this method

are:

1) The effect of refraction angle at the vacuum/dielec-

tric boundary is negligible.

2) The conductors are of zero thickness.

3) The conductors are lossless.

4) The dielectric sheet is lossless.

5) The longitudinal electric field is negligible.

In addition to the five assumptions above, the design

restrictions that a << Ag/2 and h << X ~/2 at the highest

operating frequency are required to avoid higher modes in

nonstatic applications, where a is the width of the nar-

1Ef fective dielectric constant is the single relative dielectric constant in
all space that produces an equivalent capacitance.

rower strip, h is the dielectric thickness, and A ~ is the

wavelength in the dielectric.

IV. DERIVATION OF EFFECTIVE DIELECTRIC CONSTANT

It will be necessary, for consistency, to define fractional

parameters for conductor width as well as for subregion

capacitance. Fractional width parameters are expressed as

width over total width, just as fractional capacitance is

capacitance over total capacitance. In all cases the capaci-

tances will be “geometric” capacitances, i.e., derived as

conductor width over conductor separation, and assumed

to be in vacuum.

A. Fractional Parameters

Derivation of the fractional pm-ameters will be made

with reference to Fig. l(b).

1) Fractional Free-Space Width Parameters: The width

of the inner face of the narrow conductor, including both

half-planes, is 2al and the total conductor width is 2K’.

The fractional width of the inner face is

Al= 2al/2K’ = al/K’. (2)

Similarly the fractional width of the outer face can be

written

l–Al=2(K’ –al)/2K’=l–al/K’. (3)

2) Fractional Free-Space Capacitance Parameters: The

capacitance of the inner conductor face is

c02al/2K = ~Oal/K.

The total capacitance is

CO= c02K’/2K = cOK’/K.

The fractional capacitance of the inner face is

Al= (f Oal/K)/(cOK’/K) = al/K’. (4)

The fractional capacitance of the outer face is

1– Al= (C02(K’ – al)/2K)/(cOK’/K) =1– al/K’.

(5)

A consequence of normalization is that the fractional

widths, capacitances, and areas are algebraically equiv-

alent. They are not, however, physically equivalent. In the

derivation, which follows, the physical usage of these

parameters will be indicated at points where confusion

might result.

3) Fractional Dielectric Parameters: The two fractional

dielectric capacitances will be designated q’ and q“, after
Wheeler [7]. These two parameters are obtained from two

separate conformal transformations. Wheeler termed these

parameters filling fractions and defined them as fractional

areas. The designation of q’ and q“, as capacitance, is

thought to be more physically relevant than area.

a) Derivation of q‘: The parameter q’ is the fractional

capacitance of the total dielectric area, when assumed to

be purely in parallel.

Let Ad be the area of the dielectric region in the upper

half-plane; then the total dielectric area is 2Ad. The effec-

tive width of the dielectric area is W= 2A~/S, where
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S = conductor separation= 2K, giving: W= A~/K. The

effective parallel capacitance is fOW/S = cOW\2K =

~~A ~/2 K 2. The fractional capacitance of the total dielec-

tric region is

q’= (coAd/2K2)/(EoK’/K) = A~/2KK’.

The area, Ad, is obtained by integrating the area under

the curved dielectric boundaries in Fig. l(b). This gives

~,=
&J_+KK@. (6)

where u(u) is the function describing the dielectric

boundary. The argument, u(u), is given by eq. (A6) for the

general case and by (A24) for the case R = 0.0. Use of (A6)

requires an iterative procedure. An additional difficulty

with the area integration occurs when the dielectric

boundary becomes double valued with respect to u, as

shown in Fig. 2(b), for R = 0.8. When this occurs, special

handling is required.

b) Derivation of q”: The second dielectric parameter,

q”, is the ratio of the polarization capacitance, CP, to the

total capacitance Co:

q“ = cp/co (7)

where Cp is given by (A34), and CO= (OK ‘/K.

The capacitance q‘, because of its curved dielectric

boundary, is actually neither a series nor a parallel capaci-

tance, but a combination of both. It is assumed to be

purely parallel for the purpose of comparison with the true

parallel capacitance q”.

Fig. 4(a)–(c) shows the behavior of the parallel frac-

tional capacitances, q’, q”, and Al as functions of free-

space impedance and the parameter R. An important

feature is that the true parallel fractional capacitance, q”,

is always slightly less than the equivalent parallel frac-

tional capacitance of the total dielectric area, q‘, for all

finite impedance and all R.

All width and capacitance parameters used in the re-

mainder of the main body of this paper are fractional

parameters. To avoid unnecessary repetition they will be

referred to simply as width, capacitance, or area.

B. Internal and External Capacitances

The total microstrip capacitance can be represented as

two capacitances in parallel, designated c, for the internal

capacitance and c, for the external capacitance. These

capacitances are defined as follows:

c, = the capacitance resulting from flux terminating on

the inner face of the narrow conductor;

c, = the capacitance resulting from flux terminating on

the outer face of the narrow conductor.

1) Internal Capacitance: The internal capacitance is

composed of two partial capacitances in parallel. These are

the electric component and the dielectric polarization com-

ponent. The nature of these capacitances is illustrated by

reference to Fig. l(b). The internal free-space capacitance,

given by (4), is Al. If the strips are immersed in an infinite,

1.0

o.o-L—A—
400.0 5(

Free-space’ impeda%;,O(Ohms)

(a)

O-----
400.0 5a

Free–space impedance, (Ohms)

(b)

943

.0

).0

1.

0.

0.

2
0.

0.

0.
0.0 100.0 200.0 300.0 400.0 500.0

Free–space impedance, (Ohms)

(c)

Fig. 4. Values of the parallel capacitances (a) q’, (b) q“, and (c)Al for
generalized microstrip versus free-space impedance and the parameter R.

homogeneous dielectric with relative dielectric constant

~, >1, the internal capacitance can be written

c,= A1(E, –l)+A1. (8)

The first term on the right is the dielectric polarization

term and the second is the electric, or free-space, term. For

the homogeneous case the polarization and electric fields
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l-J-Axis

Fig. 5. Schematic of capacitances showing the series externaf
component.

are coincident everywhere, so the internal capacitance can,

equivalently, be written as c, = c,A1.

The polarization field of interest in microstrip is that

shown in Fig. 3. For this case, the polarization field is

constrained by the finite dielectric boundaries. The electric

and polarization fields are no longer coincident, and the

internal capacitance must be expressed as the parallel

combination of the polarization and free-space capaci-

tances,

ct=q’’(,r-l)+Al (9)

where q“ and Al are the internal polarization and free-

space capacitances, respectively. Equation (9) is valid for

all values of dielectric constant. For free space it reduces

to c1= Al, as it should.
2) External Capacitance: The external capacitance, c,,

is the capacitance resulting from the flux terminating on

the outer face of the narrow conductor. This flux fraction

is partially in dielectric and partially in air. The lumped

equivalent circuit consists of a free-space capacitor in

series with a dielectric capacitor. Wheeler [7] noted that

the difference q’ – q“ can be interpreted as the series

component of dielectric area. This small surplus area is the

series dielectric in the external capacitance.

Fig. 5 is a schematic representation of the internal and

external capacitances in parallel. The external capacitance

is the series combination of the vacuum and dielectric

components, of width 1 – Al, at the top of the sketch. The

width is that given by (3). The shaded region on the upper

left, of separation S and width W= 1 – Al, represents the

series dielectric component of the external capacitance.

The unshaded region, with separation 1 – S, is the series
free-space capacitance.

The width of the series dielectric component is 1 – Al

and its area is q‘ – q”. The series separation S is obtained

from

Wxs=q’–q” (lo)

and

s=(q’–q’’w/w. (11)

The inverse of the external capacitance is

I/ce =1/(6 rw’/s) + l/(w/(1 - s))

giving the external capacitance as

w

c.= l_(l–l/Er)s” (12)

Substitution of 1 – Al for W and the right-hand side of

(11) for S in (12) yields the expression for the external

capacitance:

(13)

In the limit c, ~ co the external capacitance reaches a

finite limit. This is the maximum possible values of exter-

nal capacitance:

l–Al
limit Ce=
<r-cc

~,_q// .

1– l–Al

C. Effective Dielectric Constant

(14)

Finally, the effective dielectric constant is obtained by

combining the internal capacitance, (9), and external

capacitance, (13), in parallel:

l–Al
feff =q’’(c, –l)+ Al+ q/_qtf . (15)

l–(l–l/~r) ~_A1

For calculation, substitute al/K’ for Al, with al given

by (A16) for the general case and (A26) for R = 0.0.

Compute q’ using (6) and q“ with (7).

In the limit ~, A cc the ratio of effective dielectric

constant to relative dielectric constant is

limit (c,ff/c,) = q“ = CP/CO. (16)
<,*W

It is noteworthy that the width of the wide strip, A2,

does not appear in the equation of Ceff. This width, b/h in

space coordinates, enters the equations via the calculation

of q“ and CO. It also influences the value of q’ in the

calculation of dielectric area.

D. Approximation of c,~f

The most complex procedure in the use of (15) is the

computation of q‘, by numerical integration. Wheeler [7]

obtained this integral by approximating the dielectric

boundary as an ellipse, which gives good accuracy in the

mid-range of impedance for R = 0.0 or R = 1.0. Because of

the wide range of boundary shapes occurring in gener-

alized microstrip (see Fig. 2(b)) this procedure cannot be

used in general. The following empirical formula does not

require integration and gives Z’ within better than ~ 0.25
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percent of the result from (15):

l–Al
Ceff =q’’(c, –l)+Al+ ~~/–Al .

1 –0.536(1 –1/c,) ~ _ Al

(17)

Equation (17) is valid to the specified accuracy for

0<20<500 Q, 0< R <1 and 1< c,. It is the empirically

adjusted average between the case with no dielectric above

Al, and that where all of the dielectric area q” – Al is in

series.

The impedance, Z’, in the presence of the dielectric

sheet is given by

z’= zo/~

where 20 is the free-space impedance of the

given by (A9).

The relative phase velocity, up, is given by

up = z’/zo =1/&.

(18)

microstrip,

(19)

Two other important parameters, a/h and b/h, are

computed using (A18) and (A19) in Appendix I. These

parameters will usually be computed at the same time as

the computationally related parameter al. They must be

computed prior to calculation of polarization capacitance,

since a/h and b/h are arguments of CP.

V. COMPARISON TO PREVIOUS ANALYSES

The analyses of Dukes [4] and Wheeler [7] are for the

special cases R = 0.0 and R = 1.0; however their formula-

tions of Ceff can be directly applied to the general case,

using the equations derived in the appendixes.

To compare the (.ff equations derived by Dukes and

Wheeler, the external capacitance, (13), can be rewritten in

the form

1
ce=(l– Al)—

l–x
(20)

where
~{.--q,,

x=(l–1/cJ~. (21)

Since X is always less than 1, (20) can be expanded in a

binomial series, giving

C,=(l– A1)(l +X+X2+X3+ ““o). (22)

The effective dielectric constant can be approximated by

using one or more terms of the series in (22) as the external

capacitance in parallel with the internal capacitance.

A. Comparison with Dukes [4]

Using only the first term of (22) gives

c,ff=q’’(t, –l)+Al+ l–Al=q’’(cl)+l+l. (23)

This is exactly the equation derived by Dukes [4]. Effec-

tively, (23) simply ignores the presence of dielectric in the

external capacitance. Z’ computed from (23), and using

the exact conformal equations from the appendixes, is

130.

120.

110.

100.
95.
90.
85.
80.

75.

70.

65.

60.

\

+
55. \\

50. \
z

R 45.
\\\

d
k.

‘+,

: 40. ‘\
.>

N ‘\

& 35. \\ ‘\

:
\ \

; 30.
\ .\

j \ \

25.

\

a

\

\ \

20. \

\\ \
\

15. \
\

. \

\\
I Xllio

lo.~; ; I
~...

I
. . 6. ‘?. 8. 9.1

a/h

Fig. 6. Microstrip impedance computed by the methods of Wheeler [8],
Weiss et al. [10], and the conformal methods of this paper versus

conductor width and dielectric constant, for a conducting strip on a

dielectric sheet over an infinite ground plane.

accurate to about 1 percent of Z‘, computed using (15).

This shows that the effect of dielectric in the external

region is not very significant with respect to impedance.

B. Comparison with Wheeler [7]

Including the first two terms of (22) gives

c,ff =q’’(t, –l)+Al+ l- Al+(l–l/~r)(q’– q”)

=q’’(6r –l)+l+(l –l/6,.)(q’– q”). (24)

Wheeler’s [7] expression for C<,ffconsists of two equa-

tions. The first is an interpolation to obtain the effective

“filling fraction,” and the second to obtain the effective

dielectric constant. These equations are

~=q!t ~ q’--q”
t:r

(25)

and

(eff =q((, –1)+1. (26)

Substitution of q from (25) into (26) gives

c,ff=q’’(~, –l)+l+(l --~,) (q(q’– q“). (27)

Equation (27) is identical to (24), showing Wheeler’s

solution to be the first two terms of the binomial expan-

sion of the solution derived in this paper.
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C. Comparison with Previous Numerical Results

In addition to the analytical comparison with previous

static solutions, it is instructive to compare the numerical

results to the quasi-static, dielectric Green’s function

analyses of Sylvester and Weiss et al. and to Wheeler’s

approximate conformal equation. In the conformal analyses

the differences result from approximations made by the

analyst, while differences between the conformal solution

of this paper and the dielectric Green’s function result

from numerical and discretization errors in computation of

the dielectric Green’s function and, to a lesser extent, from

the omission of refraction in (15).

Fig. 6 is a direct comparison of Z’ computed using (15)

of this paper, eq. (9) of Wheeler [8], and the MSTRIP2

program of Weiss et al. [10]. Both MSTRIP2 and Wheeler

[8] differ, at most, from the results of this paper by slightly

more than 1 percent, primarily due to approximation,

numerical, and discretization errors. Identification of the

differences as approximation and numerical errors in

Wheeler [8] and Weiss et al. [10] rather than as the

omission of refraction is made from comparison at c,= 1.0,

where the conformal solution of this paper is exact.

Two more recent papers, on the calculation of micro-

strip parameters in the presence of a dielectric sheet with

R =1.0, were brought to the attention of the author by one

of the reviewers. These are Poh et al. [12] and Callarotti

et al. [13]. Both of these papers employ numerical methods

for calculation of capacitance. Neither has been compared

to the results of this paper.

VI. COMPUTATION

For computation of conventional microstrip, eq. (9) of

Wheeler [8] is the fastest and simplest method. The 1

percent accuracy provided by this equation is adequate for

most practical purposes. For generalized rnicrostrip equa-

tion of this paper, (17), provides an accuracy of 0.25

percent. This approximate form is recommended for all

but theoretical purposes.

Computation of generalized microstrip begins with

selection of values for free-space impedance, 20, and the

parameter R. A troublesome feature of the parameter R is

that its value cannot be selected in advance to provide a

particular ratio of strip widths, except for R = 0.0 and
R = 1.0. Another problem is that the impedance in the

presence of the dielectric sheet, Z’, is not known until the

last step, when (18) is evaluated.

Efficient, compact, and accurate computer programs

can, nonetheless, be written to provide generalized micro-

strip design parameters. A simple approach is to construct

interpolation tables, such as that plotted in Fig. 7, for

alumina.

Table II is a basic calculation schedule for producing

such interpolation tables. Separate tables are required for

each substrate material. The tables can be stored on disk

files and referenced directly by the design program for

interpolation. More general programs can be written using

iteration. If high accuracy is required, (17) can be used to

a/h —-—
blh —

Adt

(,= 9.6, 99.5 pm Cent alumina.

10. —

15. — -— -— -_ -_

20. -—. _
~~b -

I

I10.00

=.
h.. I ‘\. , >. I , ?!’+ [ 0.05

0.0 0.1 0,2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Parameter R

Fig. 7. Conductor widths versus impedance and R for generahzed
microstrip on alumina.

TABLE II
A BASIC CALCULATION SCHEDULE FOR PRODUCING

INTERPOLATION TABLES, WITH SUBROUTINES FROM

THE IBM 360 SCIENTIFIC SUBROUTINE PACKAGE

CAI.CUIATION EQUATIONIS SUB FROGEAH/S

1 Input z,

2 Coqute moduli k, and k (A9) (A1O) (All), (A12) US., .rltzen

3 compute elliptic integrals DCEL1 DCEL2

L Input R

5 C.mp.ce c1 a,,d c 2 (A13 ) , (A14) user wrir,.”

6 Coqute T, and T, (A15) , (A16) use, ..1,,,”

7 ConP”te a, and a, (A15) (A16) DELI 1

8 ComF.ute E(T, ,kt ) and E(T, ,ks ) DELI 2

9 Co.q.te + and b/h (A18), (A19) use. written

10 compute Gp (A33) (A3L) user written, DCELi

11 Comp..e q, , - cp/co Cp from above and (A8) User written

12 Input ,r

13 compute e, ~ ~ (17) use, written

1& compute z, (18) user .,1,,,”

15 compute “p (19) user writ,.”

I.cegratkm Of are. and mappf.~ fields between flu. Dotenc ial a.d SD... planes
requires the Jacob i.. elliptic f.ncticm, s., cn a.d d. l’hese . . . be computed using
the sub-Pro&au tUELF

get within 0.25 percent; (15) can then be used to improve

accuracy. Because of the required integration of area, (15)

is generally unsuitable for direct use in iterative programs.

VII. ESTIMATE OF REFRACTION ERROR

The total difference between the presence or absence of

dielectric in the external region is only about 1 percent of

Z’ (see Section V-A) and the effect on impedance of
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refraction at the dielectric boundaries must be much smaller

yet. To quantify the error introduced by omission of

refraction, a second solution, of equivalent precision to the

conformal solution but including refraction, is needed. The

difference between these solutions would then approxi-

mate the refraction error in the conformal solution.

A. Basis for Refraction Error Estimate

The dielectric Green’s function includes refraction, but

numerical and discretization errors are so large as to

obscure its effect. To obtain a result of sufficient accuracy

to permit comparison with the conformal solution of this

paper in the range between c,= 1 and C,+ co, the dielec-

tric Green’s function can be asymptotically corrected.

Neither the conformal procedures of this paper, nor

MSTRIP2, impose a limitation on the upper value of

dielectric constant, so any very large value of ~,, within

floating point range of the computer, can be used.

The solution of this paper provides the exact values of

20 and a/h at c,= 1. Equation (14) is the maximum value

of external capacitance, c, max. It reaches this value at

very large dielectric constant. Equation (16) is the value of

internal capacitance at very large dielectric constant. Only

a fraction of the total external capacitance, c, max, is due

to refraction, so the refraction error at large t, must be

very much less than c, max /( CTCP/CO). For c, = 1010 this

ratio is 0(10 – 10). From this it n seen that refraction error

is negligible at this dielectric constant.

B. Procedure for Calibrating MS TRIP2

The following exact parameters from the conformal

solution will be used: I. @~, = 1, 20 (exact), a/h (exact).

II. @c, =1010, Z’ ( = exact), a/h (exact).

1) With inputs of 20 and c,= 1 find a/h, with the

conformal procedure.

NOTE: To obtain values of a/h suitable for precise

comparison with MSTRIP2, the value of free-space imped-

ance used in the conformal computation, nominally 376.7

Q, was set to correspond to the velocity of light used in

MSTRIP2, 2.99792458x 108 m/s.

2) With inputs of c,= 1 and w/h= a/h, find Z with

MSTRIP2. Let this be 20.

3) With inputs of 20 and ;,= 10~0, find Z’ with the

conformal procedure.

4)

5)

6)

7)

With inputs of a/h and c,= 1010, find Z with

MSTRIP2. Let this be 2;.

Form the ratios r‘ = Zo/Zow and r”= Z ‘/Z;”. (28)

Find the values of r for intermediate values of c, by

interpolation in l/t, using

r’—r”
r=rJf+—__—.— (29)

6, “

With input of the value of a/h’ used above, and any

1 <c, < 1010 to MSTRIP2, compute a value of ZW.
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Adjust the value of ZW using

ZW(adj.) = rZW. (30)

8) With the value of 20 used above, and the value of

1< ~. <1010 used in the prlaceding step as input to

the conformal procedure, compute the value of

Z’(cr).

9) Compute the percent difference as

percent difference = [Z’(c,)/ZW(adj.) – 1] x 100.

The same procedure can be used to calibrate the capaci-

tances CAPIE and CAPKE in MSTR1P2, with identical

results for the difference in Z‘.

C. Refraction Error Results

The value of ZW(adj.) from MSTRIP2 is always slightly

lower than the value of Z’ computed by the conformal

equations. The maximum difference, of 0.0874 percent,

occurs at or near 20=111.0 !2 (a/h =1.3183874) and

6, = 3.6. This difference is tentatively attributed to the

omission of refraction effects in the conformal computa-

tion of Z’.

The correction technique gives consistent results over

the range of Z. from 10.0 to 500.01 Q using MSTRIP2 with

m = 20. MSTRIP2 does not support computation of gener-

alized microstrip, but the results obtained for a single

conducting strip over an infinite ground plane, R = 1.0, are

thought to be reasonably typical.

VIII. CONCLUSIONS

The computational methods used in preparation of this

paper have been carefully checked and tested at every

stage, and are thought to provide a level of accuracy more

than sufficient to support these conclusions.

The exact conformal methods described herein yield

static approximations at, or near, the accuracy limit for

static techniques. The absolute impedance error is esti-

mated to be 0(0,001. Z‘ ), almost entirely attributable to

omission of refraction.

The solution has a large parametric range, being valid

for all finite impedance, all values of dielectric constant,

and all conductor widths. The high accuracy together with

the large parametric range makes the solution suitable as a

primary static rnicrostrip standard.

Of the five assumptions required, one, that of negligible

refraction error, has been shown to be valid. The remain-

ing assumptions, with the possible exception of finite

conductor thickness, cannot be removed, or their effect

estimated, by conformal techniques.

With reasonable design rules, consistent with the given

assumptions and design restrictions, the methods described

are capable of producing generalized microstrip designs

with an accuracy significantly better than the practical

limitations of fabrication and materials. If required, finite

conductor thickness and frequency-dependent parameters

can be computed by applicable techniques and included as

perturbations.
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~

@@@@ @@@ t-plane

-l/Sk -l/k C2/k -1 +1 Cl/k +1/k

u–Axi8

Fig. 8 Schwam–Christoffel transformation diagram of the :, t, and w
planes.

TABLE III
TABULATION OF TRANSFORM POINTS

Point @@@@@@@

z-plsne Inf. -h -h+ib -h +h +h+ia +h

t-plane -1/2k -l/k C2/k -1 +1 Cl/k +1/k

Exponent -2 -1/2 +1 -1/2 -1/2 +1 -1/2

w-plane u ~+% -K+iK’ -K+ia2 -K +K +K+ial +K+it?

t-plane -1/rck -l/k C2/k -1 +1 Cl/k +1/k

Exponent o -1/2 o -1/2 -1/2 o -1/2

APPENDIX I

The following is a summary analysis

Christoffel transformation diagramed

of the Schwarz–

and tabulated in

Fig. 8 and Table III, which applies in the limit [,+1. The

solution involves elliptic integrals and functions, with which

the reader is assumed to be familiar.

The solution is obtained with respect to a parameter R

whose value from 0.0 to 1.0 determines the conductor

widths, a/h and b/h.

The notation of elliptic integrals and functions is rather

chaotic and nonstandardized, so it was felt desirable to

select a single reference and to follow the notation of that

reference where possible. The reference selected is the

Handbook of Elliptic Integrals for Engineers and Scientists

by P. F. Byrd and M. D. Friedman [13]. At appropriate

points in the following text the notation “B. F. nnn. nn”

appears following an equation, meaning that the source of

the equation or identity is Byrd and Friedman’s equation

nnn. nn.

From Table 111 the Schwarz–Christoffel equations for

the transformations are seen to be

dz/dt=D’(t –Cl/k)(t –C2/k)(t–l/Rk)-2

((t+l/k)(t- l/k)(t+ l)(t-1))-’/2 (Al)

and

dw/dt=D’’((t +l/k)(t –l/k)(t +l)(t–l)) -l”.

(A2)

Dividing (A2) by (Al) yields

dz/dw = ( dz/dt )/( dw/dt )

=D(t– Cl/k) (t– C2/k)(t+l/Rk)-2. (A3)

Equation (A2) is the well-known transformation t =

sn ( w ), (B.F. 119.01, 129.50), which transforms the interior

of a rectangle into a half-plane. Substitution of sn ( w ) for t

in (A3) gives the form which must be integrated to find

z(w):

w(Sn(’$)-Wk)(sn(f)- Cvk) dg ~A4)

z(w) = Dj
(sn(.$)+1/Rk)2

where D = D“/D’.

This map differs from the map of Black and Higgins [3]

in the selection of the t-plane mapping points and in the

definition of the parameter. The integration is accom-

plished by the method of undetermined coefficients as

outlined in [3]. It results in the general transformation

equation:

2hk’

[

E!–KJ Rkcn(w)dn(w)
z(w)=— E(w)+ ~, Kw+

T 1Rkcn(w)+l “

(A5)

X= x/h and Y= y/h are obtained in real form by

substitution of z = x + iy and w = u + iu in (A5). Equating

the real and imaginary parts and after some manipulation,

the equations X= x/h(u, u, k) and Y= y/h(u, U, k) are

found.

For brevity the following notation will be used:

s=sn(u, k) c=cn(u, k) d=dn(u, k)

.sI=sn(u, k’) cl=cn(u, k’) dl=dn(u, k’)

A=cdd&:-k2s2@ B=sslcl(k’’c’ +d’d; )

C = sdl D = cdslcl G = k %cds;

H= I–k ’d ’s; P = d’slcldl

2K’
X=x/h=;+—

[

E(u, k)–:u
T

R2k2[RkA+(AC –BD)/H] + <
+

(RkC+H)2+(RkD)’ G 1

(A6)

2K’
Y=y/h=

[

~ (u-l)E’

R’k2[RkB +( AD– BC)/H] + : .

(RkC+H)2+(RkD)’ H 1

(A7)

Equations (A6) and (A7) are required for mapping the

flux and equipotential lines. Equation (A6), with X set to

+ 1.0 and – 1.0, together with an integration subroutine, is

required for finding the dielectric area in the flux-potential

plane. Neither equation is required for the approximate

solution, which does not involve calculation of area.

The free-space microstrip capacitance is determined in

the flux-potential plane as conductor width divided by
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conductor separation times the permittivity:

Co=co; F/m. (A8)

The free-space impedance, 2., is

ZO = 376.7 K
K’

Given 2., the elliptic moduli,

then

Q. (A9)

k’ and k, are easily

determined, with a user-written program, by series expan-

sion of the “ nome”, q = e - (~K’/I0, which can be expressed

in terms of 20 as

q = e-(376 .7mZO) (A1O)

The complementary modulus is

k’= [@(0)/@ l(O)]*,

where

@(0) =l+2~(-l)mq~2 and
1

then found as

B.F. 1052.01 (All)

e,(o) =l+2&2,
1

B.F. 1050.01.

The modulus k is then found as

Once the moduli are calculated, the complete elliptic

integrals, K, K‘, E and E‘, can be calculated using

appropriate scientific subroutines. These are functions of

impedance only, so they will not need to be recomputed

for a given free-space impedance.

In the process of integrating (A4), expressions for Cl. C2

and Cl+ C2 arise. These constants, connecting the w to t

and z to t transformations, are

E! – R*k*KJ

CI” C2= R2Ef–Kt
(A13)

and

R(k2K’+K’–2E’)
C1+C2= kz(R*Et–K~) “

(A14)

Equations (A13) and (A14) are solved for Cl and C2

using the quadratic equation.

A. Evaluation at Points in the w Plane

The points al, a2, and UO in the w plane are of special

significance. They represent, respectively, the half-width of

the narrow condtictor, the half-width of the wide conduc-

tor, and the u coordinate of the flux-potential image of
infinity.

The Jacobian form of the incomplete elliptic integrals,

with argument T = tan@= (sin 0)/(cos +) = sn/cn, will be

used in the derivations that follow. This is the form for the

Bulirsch algorithms [14], used in the IBM-360 Scientific

Subroutine Package (SSP), which is recommended for these

calculations:

al= F(Tl, k’),

a2=F(T2, k’),

uO=F(T3, k’),
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rcl’ – k’

with TI = tan +1 =
(1- C12)k2

(A15)

with T2 = tan 42 =
E

(A16)

r

R’
with T3 = tan q53= –

(1-R*) “

(A17)

B. Evaluation at Points in the z Plane

The general solution is obtained by evaluating (A5) at

point (6), where z = h + ia and w = K + ial. Similarly,

b/h is evaluated at point (3), with z = – h + ib and w =

–K+ia2:

i=%Tlk(’-c12&R:+J
– E(Tl, k’)+ ;F(T#) 1

:=:[T*k(l-c22)(il-R
I–E(T2, k’)+ ~F(T2, k’) .

(A18)

(A19)

C. The Special Case R = 0.0

The general equations simplify significantly when R is

taken as zero:

2K’

[

E k ‘scds:
X=x/h =~+— E(TU, k)– ~u+ ~_kzd2s~

IT 1
(A20)

where TU= sn(u, k)/cn(u, k).

2K’

[

d’slcldl
Y=y/h= 1~ (u-l) E’+ ~_k2d2s2 . (A21)

1

In the general case it is not possible to obtain an explicit

form u = U( u, X, R, k), but in this case such an expression

can be obtained. This expression is very convenient for

integrating the dielectric boundary to find the dielectric

area in the flux-potential plane.

The expression is obtained by so king (A20) for SI = sin @

and forming tan +. Let

where TM= sn(u, k)/cn(u, k); then

i

s
Tu=tan+=~ —

s(~cd–ss)
(A23)
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giving

U(U, X,k) =F(~,, k) and V= U/K’. (A24)

The two dielectric boundaries are defined by X= + 1.0

and – 1.0 in (A20), but because of symmetry, only one

quadrant need be used. Use of (24) allows rapid computa-

tion of the area under the curved dielectric boundary in

the flux-potential plane.

Substitution of R = 0.0 in (A13) and (A14) defines a

simpler constant CO:

(A25)

The conductor widths corresponding to a given imped-

ance are obtained by substitution of CO for Cl in (A15).

The appropriate argument is

/

CO– k2
al= F(TO, k’), with TO= tan @O=

l–co “

(A26)

For this case, R = 0.0, a2 = al, UO= 0.0, and b/h= a/h.

The corresponding conductor widths are

[

a b 2K’ TOk(l– CO)

I=I=T m 1
–E(TO, k)+~F(TO, k’) .

(A27)

The equations of this section can also be applied to the

case R = 1.0 by the method of images.

APPENDIX II

ANALYSIS OF TEIE DIELECTRIC

P0L,4RIzAT10N CAPACITANCE

The analysis of this section is exact for the dielectric

polarization due to electrification of the inner faces of the

conductors. The result is valid for c. greater than 1.

Fig. 9 is a diagram of the transformations. The rectan-

gles representing space coordinates (z plane) and flux-

potential coordinates (w plane) are mapped to two half-

planes using the well-known transformation t = sn (z’, k)

and t‘ = sn ( w, 1). These rectangles are of dimensions N

by l?’ and L by L’, where N, N’, L, and L’ are complete

elliptic integrals of the first kind with moduli k and 1,

respectively. The z and z‘ planes are connected by the

scale factor m = N/n = N ‘/n’.

The intermediate half-planes are connected by the bilin-

ear transformation:

~,= (f-~) (t-c)

(d-c) (f-t)”
(A28)

At point (5), t’ = 1/1, t = e, c = O, and d = co. Substitu-

tion of these values in (A28) gives

l=d/e. (A29)

At point (2), d = sn(nza). At poiht (5), e = sn(nzb + iN’)

= l/[ksn(rnb)], by B.F. 125.01. Substitution for d and e

in (A29) gives

[=d/e=ksn(ma, k)sn(mh, k). (A30)

b
—

.0

n,=2?h Dielectric z-plane, (Microstrip coordinates)

L=.J

mb+iN’

m‘N’(k)@5 @

g

+ Dielectric Z,-.plane

~

,0 @ @

o ma x’-Axi8 N(k)
t= Sn(zr,k), with, m= N/n= N’/n’

@@ @@
@ t-plane

o
@

(f-d)(t-c) 1
1/k

d
inf

‘=(d-c)(f-t)
e f

;@ as
@ t’-plane

o 1
@

t’=sll(”,l) 1/1 in f

E

‘L’(l) @ @

.:
~ Dielectric w-plane

.k

O(3 @

o u-Axi.5 1)

Fig. 9, Transformation diagram for z, f. t’, and w plsmes for de-
termination of the dielectric polarization capacitance of generalized
microstrip.

The complete elliptic integral, N, is the width of the

dielectric sheet and N’ is its thickness, with ma the width

of the narrow conductor and mb the width of the wide

conductor, and m = N ‘/n’ = N ‘/2h. Then

N ‘a N ‘b

‘a = 2h
and mb = —

2h “

At this point, it is convenient to introduce the assump-

tion that the width of the dielectric sheet is very much

greater than its thickness, 2h, and the width of the narrow

conductor, a. This assumption gives results that are inde-

pendent of dielectric width. If the dielectric is narrow, the

exact formulation may be used.

In the limit as N~eo, N’=n\2 and k=l. With

substitutions for ma and mb, (A30) becomes

By B.F. 122.09. sn(u, 1) = tanh(u), yielding

(A31)

(A32)

Equation (A33) is the simplest formulation for finding

the elliptic modulus, 1, but it may fail numerically for

computation at low impedance where 1 approaches 1. This

can be overcome by using the expression for l‘, which is

obtained by substitution of tanh2 u = 1 – sech2 u and 12 =

1 – 1‘2 in (A32), giving

1‘ = ~sech2 A + sech2 B – sech2 A sech2 B (A33)

where A = wa/4h and B = wb/4h.



HOLLOWAY: GENERALIZED MICROSTIUP ON A DIELECTRIC SHEET

The geometric polarization capacitance, computed by

conductor width divided by separation in Fig.9, is

[1]

[2]

[3]

[41

[5]

[6]

[7]

[8]

[9]

[10]

2L(1)
cp=co—

L’(l) “
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